
Playing with Real-Time Shadows

Nikolas Kasyan
Crytek

Shadows in Games: Crysis 1

Shadows in Games: Crysis 2

Shadows in Games: Crysis 3

Shadows in Games: Ryse

Shadow Methods & Techniques

 Deferred Shadows

 Cascaded shadow maps

 Soft Shadows Approximation

 Shadows & Transparency

 Contact Shadows/SSDO

 Screen Space Self-Shadowing

 Volumetric shadows

 Area Light Shadows

Typical Shadows Frame Budgets

 33 ms typical videogame frame budget (30 FPS)

 4000 Draw calls (average PC)

 ~5-7ms shadows frame budget

 10Mb shadowmap texture

pools (x360, ps3)

 PC can go much higher

 10+ shadow casting lights

Deferred Shadows

 Shadow mask for the sun

 Special render target to accumulate shadow occlusion

 Shadow mask combines multiple shadowing technique on top of each other before using in
actual shading

 VSM, per-object shadows, clouds shadows

 Point light shadows rendered directly to the light buffer

10+ shadow casting lights Sun shadow mask

Cascaded Shadows Maps

 View Frustum is covered with multiple shadow frustums

 Usually distance-based splitting

Cascaded Shadows Maps

 Cascades Splitting Scheme
 Approximate Logarithmic texel density distribution

 Shadow frustums adjusted to cover the camera view
frustum conservatively

 Orientation for shadow frustums is fixed in world space

 Having more cascades allows
 Improved texel density, reduced aliasing and improved

self-shadowing for wider shadow range due to a better
approximation of the logarithmical distribution

 For each cascade snap the shadow frustum to the SM’s texel grid

 Shadow passes for cascades/point lights are rendered in a deferred way

 Potential shadow-receiving areas are tagged in the stencil buffer by
rendering frustum volumes
 Allows to have a more sophisticated splitting into cascades

 Picks a cascade with the highest resolution in overlapping regions

 Uses shadow map space more efficiently

Deferred Shadow Passes

 Not all the cascades are updated in one frame

 Update cost distributed across several frames

 Performance reasons

 Allows us to have more cascades – better shadow map density distribution

 Distant cascades are updated less frequently

 Cached Shadow Maps are not updated but are used for shadowing

 Can handle dynamic objects with additional memory

 Last cascade uses VSM and blends additively with the shadow mask
 Allows to have large penumbras from huge distant objects

Shadow Cascades Caching

 We always split omni-directional lights into six independent projectors

 Shadow map for each projector is scaled separately
 Based on the shadow projection coverage

 Final scale is a result of
a logarithmic shadow map density distribution function,
which uses the coverage as a parameter

 Use cascades for large projectors

 Texture atlas to pack all shadow maps
each frame after scaling
 Texture atlas is allocated permanently to avoid

memory fragmentation

 Size on consoles: 1024x1024 (4 MB)

 Receiving areas tagged by stencil

Point Light Shadows

Shadow atlas

 Used to increase self-shadowing details in cutscenes and for very
large and detailed objects in game (first person weapon)

 Separate hi-resolution shadow map for dedicated objects

 Global and per-objects shadows are blended to the shadowmask
with a max() filter.

 Huge per-object shadow map bias to eliminate low-res self-
shadowing with global shadow maps (CSM, point lights)

 Objects still cast global low-resolution shadows

 Self-shadowing comes from hi-resolution shadow map only

Per–Object Shadow Maps

Per–Object Shadows

Per–Object Shadows

Per–Object Shadows

 Different first-person and third-person models for rendering and
global shadow map generating

 Proper self-shadowing is achievable only with separate per-object shadow
maps

First Person Weapon Self-Shadowing

 Problem with deferred shadowing

 uses different view frustum (near/far planes, FOV)

 General case - need to re-project weapon depth from the “weapon” space

 When FOV difference is not large – approximate re-projecting with simple depth re-scaling

First-Person Weapon Self-Shadowing

Soft Shadows Approximation

Soft Shadows Approximation

 We use Poisson PCF taps with randomized rotations in shadow space

 Adjusting the kernel size at runtime gives a good approximation of soft
shadows with variable penumbra

 Soft shadows idea: Estimate average distance ratio to shadow casters
 Similar to Percentage-Closer Soft Shadows [Randima05]

 Basic Algorithm:

 Poisson-distributed taps are presorted by distance from the kernel center

 Initial kernel radius set to match the maximum range (= largest/longest penumbra)

 Use this kernel to estimate the average distance ratio

 The amount of samples is reduced proportionally to the avg. distance ratio

 This affects the radius of the kernel since the taps are sorted

 Use only the reduced amount of samples for final shadow computation

 Cascade shadow maps need custom kernel scale adjustment
to handle transitions between cascades

 Compute Shader option: fetch all taps to CS shared memory
and reuse them for both distance estimation and shadow computation

Soft Shadows Approximation

Area Lights Shadowing

No light

Area Lights Shadowing

Simple soft-shadows approximation

Area Lights Shadowing

Voxel based area light shadowing

Area Light Shadows

• Multi-resolution uniform voxel data

• Efficient occlusion sampling for very large volumes

• Adaptive resolution for ray traversal

• Multiple distance-based cascades are an option

• Dynamic surface voxelization and downsampling

• Downsampling “directional occlusion” values

• Adaptive downsampling

• Avoids updating static parts of the scene each frame

• Bit-masked change-aware downsampling (XOR with the previous
frame’s voxel data)

Area Light Shadows

Voxelized scene

Voxel Data Downsampling

• Directional occlusion Concept

• Downsample light occlusion

• Bi-directional; 3 component

Voxel Data Downsampling

Area Light Shadows: Cone Tracing

• Approximation of grouped rays

Area Light Shadows: Cone Tracing

• Sample different Voxelization levels

• Adjust voxel level along the ray

• Directional Occlusion Gathering

Area Light Shadows: Cone Tracing

• Sampling Errors

Area Light Shadows: Cone Tracing

• Sampling Errors

Area Light Shadows

Ray-traced Spherical Area Light
Autodesk Maya 2012 ~40s

Real-time Area light shadows ~20ms
(Voxelization + Cone Tracing)

Area Light Shadows

 World Space Ambient Occlusion with cone tracing

 Approximated with 8 uniformly distributed cones

 For alpha blended shadow receivers

 Forward passes to apply shadows

 For transparent shadow casters(e.g. hair, smoke) we accumulate
alpha values of the casters

 Stored in a 8-bit render target

Shadows & Transparency

 Translucency map generation:

 Depth testing using depth buffer from a regular opaque shadow map to avoid
back projection/leaking

 Transparency alpha is accumulated only for objects that are not in “opaque”
shadows

 Alpha blended shadow generation pass to accumulate translucency alpha
(sorted back to front)

 In case of cascaded shadow maps, generate translucency map for each
cascade

 Shadow terms from shadow map and translucency map are both combined
during deferred shadow passes with max() operation

Shadows & Transparency

Contact Shadows/SSDO

 Contact Shadows/SSDO
 Applied to all light sources and ambient, via screen space bent normals (average unoccluded

direction)

SSDO off SSDO on

 Core idea the same as SSDO [Ritschel 2010]

 Modulate lighting with computed screen space occlusion

 Produces soft contact shadows

 Can also hide shadow bias issues

 Considerable quality gain over just SSAO

 Directional occlusion information is accessible in a deferred
way

 Fits better into the existing lighting pipeline

 Can be applied efficiently to every light source

Contact Shadows

 Occlusion information generation

 Compute and store bent normal N' during SSAO pass

 Bent normal is average unoccluded direction

 Requires clean SSAO without any self-occlusion and a relatively wide radius

 For each light

 Compute N dot L as usual

 Compute N' dot L

 Center depth is full resolution, all other taps
 are FP16 half-resolution depth

 Attenuate lighting with the occlusion amount multiplied by a clamped
difference between the two dot products

Contact Shadows

 Simple trick/approximation

 Ray casting along screen space light vector

 For cutscenes specify the affected depth buffer range

 Ray length tracking allows to even compute proper soft shadowing

Screen Space Self-Shadowing

Volumetric Fog Shadows

 Based on TÓTH09: accumulate not in-scattered light but shadow contribution
along the view ray instead

 Ray casting in shadow space
 Interleave pass distributes shadow samples along the view direction on a

8x8 grid shared by neighboring pixels
 Half-resolution destination target for performace

 Gather pass computes final shadow value
 Bilateral filtering was used to minimize ghosting and halos
 Shadow stored in alpha, 8 bit depth in red channel
 Used 8 taps to compare against center full resolution depth

 Max sample distance configurable (~150-200m in C3 levels)
 Cloud shadow texture baked into final result
 Final result modifies fog height and radial color

Volumetric Fog Shadows

Volumetric Fog Shadows: Naive Upscale

Volumetric Fog Shadows: Bilateral Upscale

 Cascaded shadow map ray casting
 Ray casting happens in shadow space
 Adaptive ray casting - more samples taken

in the near space
 Arbitrary shadow frustums for cascades
 Frustums are overlapped
 Always pick the cascade with

the highest sampling density
 Use global parametric coordinate to store the current ray’s intersection points

with the shadow frustum
 No need to re-project between cascades
 Optimized ray clip function that directly modifies the global parametric

coordinate

Volumetric Fog Shadows

CSM frustum split schemes analysis

Logarithmical Split Scheme

 Multiple split schemes for variable CSM‘s bounds

Typical Logarithmical Split Scheme

 Splits overlapping dependency on the CSM‘s near bound

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

1 2 3 4 5 6

Series1

Series2

Series3

Series4

Series5

Series6

 Cascaded splits‘ frustums overlapping
 Using accurate logarithmic distribution is difficult for the splits that are

close to the near plane

 Closest splits are adjusted manually

 Efficient cascades splitting is very sensitive to the camera’s near
plane and FOV
 Larger FOV increases shadow frustums overlapping

 Larger FOV increases shadow map waste on invisible parts of the scene

 Closer near plane increases shadow frustums overlapping

 Tighter CSM bounds for cutscenes with limited depth range

Cascaded Shadows Maps Split Consideration

Tighter CSM Bounds for Cutscenes

Tighter CSM Bounds for Cutscenes

Tighter CSM Bounds for Cutscenes

Light Space vs. View Space Shadow Frustums Alignment

 View space aligned
 Better shadow space usage

 Less frustum overlapping

 Higher Shadow map sampling

 density

 Shadows are not stable in case
of shadowmap under-sampling
(shadow aliasing - shimmering for moving camera)

Light Space vs. View Space Shadow Frustums Alignment

 Light space aligned shadow frustums

 Less efficient shadow map usage due to increased frustums overlapping

 More efficient for Shadow Cascades Caching

 Allows to use shadow map texel size snapping

 Stable shadows for under-sampled shadow maps with moving camera

 Influencing factors:

 Low shadow map sampling density

 Precision of the depth buffers

 Direction of the light source relative to the camera

Shadow Aliasing with Cascaded Shadow Maps

 Different scenarios to overcome aliasing

 Sun shadows: front faces rendered with slope-scaled depth bias

 Point light shadows: back face rendering, works better for indoors

 Variance shadows for distant LODs - render both faces to shadow maps

 Constant depth bias during deferred shadow passes to overcome
depth buffer precision issues

Shadow Aliasing

Current Situation

 Mostly undersampled shadows are used in games nowadays

 Cascades splitting is not efficient

 Tricks like shadowmap texels snapping, per-object shadows

 Per-level/cutscene tweaked solutions

 Eliminate/minimize overlapping of cascaded shadow map
frustums

 Eliminate/minimize unused regions in the shadow map
 Minimize shadow map waste on invisible parts of the scene
 Aim for the very high shadow map sampling density – makes

tricks like shadow map texel snapping unnecessary
 Guarantee close to constant shadow map sampling density for

all regions of the scene
 Having close to constant shadowmap density helps to address

the shadow aliasing problem

Main Goals – What We Are Trying to Achieve

 A type of parallel projection

 Projects an image by intersecting parallel rays
(“projectors”) from a three-dimensional source object
with a target projection plane

 The projectors are not perpendicular to the projection
plane

Oblique Projection for Cascaded Shadow Maps

 The projectors are defined by the two angles α and λ where
 α is the angle between the line (x,y,xp,yp) and the projection
plane,
 λ is the angle between the line (x, y, xp, yp) and the x axis on the
projection plane
L = the length of the line (x,y,xp,yp). L1 = L / z

Oblique Projection for Cascaded Shadow Maps

1000

01sin1cos1

0010

0001

 LL
z

y

x

P

 Use oblique projectors

 Use view frustum clip planes as a shadowmap projection planes

 Projection planes are selected from the 5 view frustum planes (Far
plane is irrelevant)

 Oblique projection planes for shadow projections are selected
based on the light direction

 Select planes that have the same sign of the dot product between the
plane normal and the light direction as the nearest plane

Oblique Projection for Cascaded Shadow Maps

Planes Selection

 Projection planes are split into segments to get an approximation
of a logarithmic distribution

 Plane segments are essentially shadowmap cascades

 Faraway segments cover more area with the same shadow map
resolution

 CPU culling of shadow casters is performed with a set of oblique
frustums

Oblique Projection for Cascaded Shadow Maps

Plane Segments Selection

View Frustum Slices (Left Plane)

View Frustum Slices (Left Plane)

View Frustum Slices (Left Plane)

View Frustum Slices (Left Plane)

View Frustum Slices (Bottom Plane)

View Frustum Slices (Bottom Plane)

View Frustum Slices (Bottom Plane)

View Frustum Slices (Bottom Plane)

View Frustum Slices (Near Plane)

Plane Segments Selection

View Frustum Slices (Right Plane)

View Frustum Slices (Right Plane)

View Frustum Slices (Right Plane)

View Frustum Slices (Right Plane)

View Frustum Slices (Top Plane)

View Frustum Slices (Top Plane)

View Frustum Slices (Top Plane)

View Frustum Slices (Top Plane)

View Frustum Slices (Near Plane)

 Extend frustum segments to quads and use a rectangular
shadow map
• Requires more plane segments to get an acceptable approximation of a

logarithmic splitting

• wasted shadow space

 Use view camera perspective warp together with oblique projection
 Virtual view camera with shifted and expanded near plane
 Almost no wasted shadow space
 Can be used successfully when we have enough shadow map sampling density

to overcome shimmering
 Logarithmic distribution for projection planes segments

Shadow Map Parameterization

Shadow Map Parameterization

Shadow Map Parameterization

Oblique Shadow Projection

Oblique Shadow Casting

Affected Projection Planes Segments and Frustum Slices

Oblique Shadow Projection

 Shadow maps accurately cover
the view frustum

 Only small parts of shadow maps are
wasted on invisible areas of the scene

 No cascades overlapping
 Potentially shadow-receiving areas get guaranteed shadow sampling

density since casters are projected on the most appropriate plane
segments

 The approach is designed to maintain close to constant shadow map
sampling density independent of light direction
 Helps to address shadow aliasing problem

Oblique Shadow Projection

 Shadow map rendering

 Every split of view frustum plane is processed independently

 Geometry shader replicates triangles between several
segments on a plane when necessary

 Proper plane’s segment is selected based on the Z coordinate
in the view space

Implementation Details

 Deferred shadow rendering
 Consequently apply shadows from all oblique shadow maps
 No complex stenciling between cascaded is needed as oblique frustums do not

overlap
 Texture arrays to index global shadow map segments/cascades

 Forward shadow rendering
 straightforward shadow maps indexing with a one-to-one correspondence of

the shadowed regions in to the shadow map regions

 Clustered Forward and Deferred Shading
 No overlapping for shadow frustums
 straightforward shadow maps indexing with a one-to-one correspondence of

the clusters to the shadow map regions with oblique projection

Use Cases

 Efficient texture space usage

 Better addressed shadow aliasing problem

 Allows to approach guaranteed shadowmap sampling
density

 Aliasing-free if hi-resolution shadow maps are used

(1-2K, optimal 4K)

Oblique Shadow Projection Features

Oblique Shadow Projection: Demo

Summary

 Deferred Shadows

 Cascaded shadow maps

 Soft Shadows Approximation

 Voxel based area light shadows

 Shadows & Transparency

 Contact Shadows/SSDO

 Screen Space Self-Shadowing

 Volumetric shadows

 Oblique projection for cascaded shadow maps

Special Thanks

 Tiago Sousa, Carsten Wenzel, Anton Knyazyev, Michael Kopietz,
Theodor Mader, Vladimir Kajalin, Dmitry Gait, Nicolas Schulz,
Serhat Eser Erdem, Elmar Eisemann

 And to the entire Crytek Team !

Questions

Nick@crytek.com / NickKasyan@googlemail.com

